- Claudio Bartocci4,
- Ugo Bruzzo4 &
- Daniel Hernández-Ruipérez5
Part of the book series: Mathematics and Its Applications ((MAIA,volume 71))
-
497 Accesses
Abstract
The first five Sections of this Chapter, the technical core of this book, are dedicated to set down the basic differential geometry of G-supermanifolds, by introducing the fundamental objects one needs: morphisms, products, supervector bundles, and differential forms. It should be pointed out that the relevant definitions are quite different from the usual ones, and rather in the spirit of the algebraic geometry. This is a consequence of the fact that part of the information conveyed by the structure sheaf of a G-supermanifold is not otherwise embodied in the associated topological space.
They explore the new field and bring back their spoils — a few simple generalizations — to apply them to the practical world of three dimensions. Some guiding light will be given to the attempts to build a scheme of things entire A.S. Eddington
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
£29.99 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
-
GBP19.95
- Price includes VAT (United Kingdom)
- eBook
- GBP35.99
- Price includes VAT (United Kingdom)
- Softcover Book
- GBP44.99
- Price includes VAT (United Kingdom)
- Hardcover Book
- GBP44.99
- Price includes VAT (United Kingdom)
Tax calculation will be finalised at checkout
Purchases are for personal use only
') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()
Preview
Unable to display preview.Download preview PDF.
References
The fact that this morphism exists and is uniquely defined, albeit seemingly, is not entirely trivial; for a proof, see [Gro1].
Cf. Definition II.2.3.
The notion of body of a supermanifold is more general, and applies to a wider category of supermanifolds than DeWitt ones [BoyG, CaRT].
Since Gl(r) is not abelian, H1(X, Gl(r)) is not a group, but only a pointed set; see [Hirz].
Even though we shall not need this fact in the sequel, let us notice that Batchelor’s theorem (Corollary III.1.9) implies an isomorphism H1(X, Aut Λ Rr) ≃ H1(X, Gl(r)); a direct proof of this fact was given in [Bch1].
This because any graded ideal is contained in a maximal graded ideal. Proof of this statement, which makes use of Zorn’s lemma, goes as in the non-graded case [AtM].
Download references
Author information
Authors and Affiliations
Department of Mathematics, University of Genoa, Genoa, Italy
Claudio Bartocci&Ugo Bruzzo
Department of Pure and Applied Mathematics, University of Salamanca, Salamanca, Spain
Daniel Hernández-Ruipérez
Authors
- Claudio Bartocci
View author publications
You can also search for this author in PubMedGoogle Scholar
- Ugo Bruzzo
View author publications
You can also search for this author in PubMedGoogle Scholar
- Daniel Hernández-Ruipérez
View author publications
You can also search for this author in PubMedGoogle Scholar
Rights and permissions
Copyright information
© 1991 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Bartocci, C., Bruzzo, U., Hernández-Ruipérez, D. (1991). Basic geometry of G-supermanifolds. In: The Geometry of Supermanifolds. Mathematics and Its Applications, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3504-7_4
Download citation
- .RIS
- .ENW
- .BIB
DOI: https://doi.org/10.1007/978-94-011-3504-7_4
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-010-5550-5
Online ISBN: 978-94-011-3504-7
eBook Packages: Springer Book Archive